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Abstract

Forced convection heat transfer to incompressible power-law fluids from a heated elliptical cylinder in the steady, laminar cross-flow
regime has been studied numerically. In particular, the effects of the power-law index (0.2 6 n 6 1.8), Reynolds number (0.01 6 Re 6 40),
Prandtl number (1 6 Pr 6 100) and the aspect ratio of the elliptic cylinder (0.2 6 E 6 5) on the average Nusselt number (Nu) have been
studied. The average Nusselt number for an elliptic cylinder shows a dependence on the Reynolds and Prandtl numbers and power-law
index, which is qualitatively similar to that for a circular cylinder. Thus, heat transfer is facilitated by the shear-thinning tendency of the
fluid, while it is generally impeded in shear-thickening fluids. The average Nusselt number values have also been interpreted in terms of
the usual Colburn heat transfer factor (j). The functional dependence of the average Nusselt number on the dimensionless parameters
(Re,n,Pr,E) has been presented by empirically fitting the numerical results for their easy use in process design calculations.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Owing to their wide ranging applications, considerable
research efforts have been devoted to the steady cross-flow
of and heat transfer from cylinders of circular and non-cir-
cular cross-sections to Newtonian and non-Newtonian flu-
ids. Typical examples include the flow in tubular and pin
heat exchangers, hot wire anemometry, sensors and probes,
in the RTM process of manufacturing fiber reinforced
composites, in filtration screens and aerosol filters, etc. In
addition, this flow also represents a classical flow problem
in the domain of transport phenomena. Consequently, a
voluminous body of information is now available on vari-
ous aspects of the flow phenomena associated with the
transverse flow of Newtonian fluids over a circular cylin-
der, e.g., see the extensive reviews available in the literature
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[1–6]. Suffice it to say that adequate information is now
available on most aspects of flow and heat transfer for
the flow of Newtonian fluids past a circular cylinder. How-
ever, it is fair to say that the flow phenomenon has been
studied much more extensively than the corresponding
heat/mass transfer problems, even for the flow of Newto-
nian fluids over a circular cylinder.

On the other hand, it is readily acknowledged that many
substances of multi-phase nature and/or of high molecular
weight encountered in industrial practice (pulp and paper
suspensions, food, polymer melts, solutions and in biolog-
ical process engineering applications, etc.) display shear-
thinning and/or shear-thickening behaviour [7]. Owing to
their high viscosity levels, these materials are generally
processed in laminar flow conditions. Admittedly, many
non-Newtonian fluids, notably polymeric systems display
viscoelastic behaviour; the available scant literature both
for the creeping flow past a single cylinder and over a peri-
odic array of cylinders seems to suggest the viscoelastic
effects to be minor in this flow configuration, at least as
far as the gross engineering parameters (drag and heat
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Nomenclature

a semi-axis of the elliptical cylinder normal to the
direction of flow, m

b semi-axis of the elliptical cylinder along the
direction of flow, m

cp specific heat of the fluid, J/kg K
E aspect ratio of the elliptical cylinder, =b/a,

dimensionless
I2 second invariant of the rate of the strain tensor,

s�2

h local convective heat transfer coefficient, W/
m2 K

j Colburn factor for heat transfer, dimensionless
k thermal conductivity of the fluid, W/m K
m power-law consistency index, Pa sn

n power-law flow behaviour index, dimensionless
Nu(h) local Nusselt number, dimensionless
Nu average Nusselt number, dimensionless
P pressure, Pa
Pr Prandtl number, dimensionless

Re Reynolds number, dimensionless
U1 uniform inlet velocity of the fluid, m/s
T temperature, K
T1 temperature of the fluid at the inlet, K
Tw temperature at the surface of the cylinder, K
Ux,Uy x- and y-components of the velocity, m/s
x,y stream-wise and transverse coordinates, m
XN normalized average Nusselt number using the

corresponding Newtonian value, dimensionless
XE normalized average Nusselt number using the

corresponding value for circular cylinder,
dimensionless

Greek symbols

g viscosity, Pa s
h angular displacement from the front stagnation

(h = 0), degrees
q density of the fluid, kg/m3

s extra stress, Pa
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transfer characteristics) are concerned [4]. Therefore, it
seems reasonable to begin the analysis with the flow of
purely viscous power-law type fluids and the level of com-
plexity can gradually be built up to accommodate the other
non-Newtonian characteristics.

As far as known to us, there has been no prior study on
the forced convection heat transfer in power-law fluids
from an elliptical cylinder. This constitutes the main objec-
tive of this work. At the outset, it is desirable, however, to
briefly recount the available limited work on the flow of
Newtonian and power-law fluids past an elliptical cylinder
to facilitate the subsequent presentation of the new results
for the forced convection heat transfer in power-law fluids
from an elliptical cylinder.

2. Previous work

As noted earlier, while the fluid mechanical aspects of
the flow of Newtonian fluids over a circular cylinder have
been thoroughly reviewed elsewhere, the corresponding
heat transfer literature has been summarized recently by
Bharti et al. [8]. In contrast, only limited information is
available even for the Newtonian fluid flow over an ellipti-
cal cylinder [9].

Even less is known about the power-law fluid flow and
heat transfer from a circular cylinder in the steady cross-
flow regime. The available literature comprises four creep-
ing flow studies [10–13] and suffice it to say here that all of
these analyses are internally consistent with each other.
Similarly, only a few studies are available in the steady
cross-flow regime relating to finite values of the Reynolds
number [9,14–23]. The limits of the cessation of the creep-
ing flow regime and transition from 2D steady symmetric
flow to asymmetric flow regimes have been delineated only
recently [21] for the flow of power-law fluids across a circu-
lar cylinder. This study showed that shear-thickening fluid
behaviour can advance the formation of asymmetric
wakes. All in all, reliable results are now available for the
flow of power-law fluid over a circular cylinder in the
two-dimensional steady symmetric flow regime embracing
the range of conditions as: Re 6 40; 0.2 6 n 6 2. On the
other hand, there have been only three studies [15,17,23]
on forced convection heat transfer from a circular cylinder
in the steady cross-flow regime. In addition to the local and
global heat transfer characteristics, these authors also pre-
sented the dependence of the heat transfer on the thermal
boundary conditions imposed at the surface of the cylinder.
Combined together, these studies encompass the ranges of
Reynolds number as 5 6 Re 6 40, of power-law index
0.6 6 n 6 2 and Prandtl number as 1 6 Pr 6 100 and for
the two commonly used thermal boundary conditions
(i.e., isothermal and isoflux) on the surface of the cylinder.
These numerical results have been correlated using simple
predictive expressions to permit an easy estimation of the
value of the average heat transfer coefficient for a cylinder
immersed in streaming power-law liquids. The available
scant experimental studies have also been summarized else-
where [2–4,24] and these are not repeated here. Suffice it to
add here that the preliminary comparisons between the
predictions and the scant mass transfer results are
encouraging.

In contrast, as far as known to us, there has only one
study dealing with the steady flow of power-law fluids over
an elliptical cylinder [9]. Extensive results were presented on
the individual and total drag coefficients, streamline and
surface pressure profiles and their functional dependence
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on the pertinent dimensionless parameters over the ranges
as: Reynolds number in the range 0.01 6 Re 6 40, power-
law index as 0.2 6 n 6 1.9 and the aspect ratio of the ellip-
tical cylinder as 0.2 6 E 6 5. The only other relevant work
is that of Woods et al. [25] who studied the creeping flow of
power-law fluids in periodic arrays of elliptic cylinders. In
principle, in the limit of vanishingly small volume fraction
of solid, these results should approach that for a single ellip-
tic cylinder. In practice, however, owing to the highly non-
linear relationship between drag and solid volume fraction,
this extrapolation step necessitates the knowledge of such
results for very small values of the solid volume fraction
in order to extract the results for a single cylinder using this
approach. Since the detailed discussion of the available lit-
erature on the Newtonian flow past an unconfined elliptic
cylinder has been presented elsewhere [9], these details are
not repeated here. On the other hand, only limited results
are available on heat transfer even in Newtonian fluids from
elliptical cylinder. For instance, Chao and Fagbenle [26]
presented a boundary layer solution for the forced convec-
tion heat transfer from elliptical cylinder in cross-flow using
the Merk’s and the Blasius–Frossling method. More
recently, another boundary layer analysis based on the
application of the well-known Von Karman–Pohlhausen
integral method has been carried out by Khan et al. [27].
However, their analysis not only implicitly assumes large
values of the Prandtl number (thin thermal boundary layer),
but is also limited to elliptic cylinders with E P 1. A numer-
ical solution of the two-dimensional Navier–Stokes and
energy equations for forced convection heat transfer from
an elliptic cylinder was reported by D’Alessio and Dennis
[28] for two values of the Reynolds number of 5 and 20
and for Prandtl numbers ranging from 1 to 25. They pre-
sented correlations for the average Nusselt number in terms
of the Peclet number for three different angles of inclina-
tions (30�, 40� and 70�). Badr [29,30] has numerically inves-
tigated the two-dimensional laminar forced and mixed
convection heat transfer from an isothermal elliptic cylinder
to air (Pr = 0.7). He reported the influence of Reynolds
number (20–500), angle of inclination (0–90�) and aspect
ratio (0.4–0.9) on heat transfer. The effect of fluctuations
in the free-stream velocity on the mixed convection heat
transfer from an elliptic cylinder has been studied by
Ahmad and Badr [31] for three values of the Reynolds num-
bers of 50, 100 and 150 and Grashof numbers as 20,000,
30,000 and 50,000.

Admittedly, scant experimental results are also available
for the flow and heat transfer from elliptic cylinders (e.g.,
see [32–34], etc.), but most of these have focused on the
unsteady (high Reynolds number) flow characteristics
and are thus not of direct relevance to the present work.

In summary, thus, as far as known to us, there has been
no prior study dealing with the forced convection heat
transfer from an elliptical cylinder to power-law fluids.
This work is concerned with the investigation of the two-
dimensional forced convection heat transfer in incompress-
ible power-law fluids from an isothermal cylinder of ellipti-
cal cross-section over the following ranges of the Reynolds
number (0.01 6 Re 6 40), Prandtl number (0.7 6 Pr 6

100), the power-law index (0.2 6 n 6 1.8) and for aspect
ratio (0.2 6 E 6 5).

3. Problem statement and governing equations

Consider the two-dimensional, laminar, steady flow of
an incompressible power-law liquid with a uniform velocity
and temperature (U1,T1) across an infinitely long cylinder
of elliptical cross-section (aspect ratio, E). The surface of
the cylinder is maintained at a constant temperature,
Tw(>T1). Both, the thermo-physical properties of the
streaming liquid are assumed to be independent of the tem-
perature and the viscous dissipation effects are neglected.
These two assumptions lead to the de-coupling of the
momentum and the thermal energy equations, but at the
same time restrict the applicability of these results to the
situations where the temperature difference is not too great
and for moderate viscosity and/or shearing levels. The tem-
perature difference between the surface of the cylinder and
the streaming liquid DT(=Tw � T1) is assumed to be small
(�2 K) so that the variation of the physical properties,
notably, density and viscosity, with temperature could be
neglected. Also, the unconfined flow condition is simulated
here by enclosing an isothermal elliptic cylinder in a circu-
lar outer boundary (of diameter D1), as shown schemati-
cally in Fig. 1. The diameter of the outer circular
boundary D1 is taken to be sufficiently large to minimize
the boundary effects (Fig. 1).

The continuity, momentum and thermal energy equa-
tions for this flow problem in their compact forms are writ-
ten as follows:

� Continuity equation:

r � U ¼ 0 ð1Þ
� Momentum equation:

qðU � rU � f Þ � r � r ¼ 0 ð2Þ
� Thermal energy equation:

qcpðU � rT Þ � kr2T ¼ 0 ð3Þ

where q, U, T, f and r are the density, velocity (Ux and
Uy components in Cartesian coordinates), temperature,
body force and the stress tensor, respectively. The stress
tensor, sum of the isotropic pressure, p and the deviator-
ic stress tensor (s), is given by

r ¼ �pI þ s ð4Þ

The rheological equation of state for incompressible fluids
is given by

s ¼ 2geðUÞ ð5Þ
where e(U), the components of the rate of strain tensor, are
given by
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Fig. 1. Schematic representation of the unconfined flow (uniform velocity,
U1 and free-stream temperature, T1) around an isothermal (temperature
Tw) elliptical cylinder. (a) E < 1 (a > b), (b) E = 1 (a = b, circular cylinder),
(c) E > 1 (a < b).
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eðUÞ ¼ ðrUÞ þ ðrUÞT

2
ð6Þ
For a power-law fluid, the viscosity (g) is given by

g ¼ mðI2=2Þðn�1Þ=2 ð7Þ
where m is the power-law consistency index and n is the
power-law index of the fluid (n < 1: shear-thinning; n = 1:
Newtonian; and n > 1: shear-thickening fluid) and I2 is
the second invariant of the rate of strain tensor (e) given by

I2 ¼ 2ðe2
xx þ e2

yy þ e2
xy þ e2

yxÞ ð8Þ

and the components of the rate of strain tensor are related
to the velocity components in Cartesian coordinates as
follows:

exx ¼
oU x

ox
; eyy ¼

oU y

oy
; exy ¼ eyx ¼

1

2

oU x

oy
þ oUy

ox

� �
ð9Þ

The physically realistic boundary conditions for this flow
configuration may be written as follows:

� At the inlet boundary: The uniform flow condition is
imposed at the inlet.

Ux ¼ U1; U y ¼ 0 and T ¼ T1 ð10Þ

� On the surface of the isothermal cylinder: The standard
no-slip condition is used, i.e.,

Ux ¼ 0; U y ¼ 0 and T ¼ T w ð11Þ

� At the plane of symmetry, i.e., center line (y = 0): the
symmetric flow condition has been used. It can be writ-
ten as follows:

oUx

oy
¼ 0; U y ¼ 0 and

oT
oy
¼ 0 ð12Þ

� At the exit boundary: The default outflow boundary con-
dition option in FLUENT (a zero diffusion flux for all
flow variables) was used in this work. In essence, this
choice implies that the conditions of the outflow plane
are extrapolated from within the domain and as such
have negligible influence on the upstream flow condi-
tions. The extrapolation procedure used by FLUENT
updates the outflow velocity and the pressure in a man-
ner that is consistent with the fully-developed flow
assumption, when there is no area change at the outflow
boundary. Note that gradients in the cross-stream direc-
tion may still exist at the outflow boundary. Also, the
use of this condition obviates the need to prescribe a
boundary condition for pressure. This is similar to the
homogeneous Neumann condition, given by

oUx

ox
¼ 0;

oU y

ox
¼ 0 and

oT
ox
¼ 0 ð13Þ

Owing to the symmetry of the flow over the range of
conditions studied herein, the computations have been car-
ried out in the upper half (y P 0) of the computational
domain (Fig. 1). The numerical solution of the governing
equations (Eqs. (1)–(3)) in conjunction with the above-
noted boundary conditions (Eqs. (10)–(13)) yields the prim-
itive variables, i.e., velocity (Ux and Uy), pressure (p) and
temperature (T) fields. The flow and thermal fields, in turn,
are used to deduce the local and global characteristics like
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drag coefficients, stream function, vorticity, surface pres-
sure coefficient, local and average Nusselt number, etc.,
as described elsewhere [8,9,14–17,21,22]. At this point, it
is appropriate to introduce some definitions:

� The Reynolds (Re), and Prandtl (Pr) numbers for
power-law fluids are defined as follows:

Re ¼ qð2aÞnU 2�n
1

m
and Pr ¼ cpm

k
U1
2a

� �n�1

� The values of the local Nusselt number, Nu(h) on the sur-
face of an isothermal elliptical cylinder are evaluated
using the temperature field as follows:

NuðhÞ ¼ hð2aÞ
k
¼ � oT

ons
ð14Þ

where the ns (the unit vector normal to the surface of the
cylinder) is given as

ns ¼
ðx=a2Þex þ ðy=b2Þeyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
a2

� �2 þ y
b2

� �2
r ¼ nxex þ nyey

where ex and ey are the x- and y-components of the unit
vector, respectively. Such local values are further aver-
aged over the surface of the cylinder to obtain the sur-
face averaged (or overall mean) Nusselt number as
follows:

Nu ¼ 1

2p

Z 2p

0

NuðhÞdh ð15Þ

The average Nusselt number (or dimensionless heat
transfer coefficient) can be used in process engineering
design calculations to estimate the rate of heat transfer
from an isothermal cylinder. Dimensional analysis of the
field equations and the boundary conditions suggests the
average Nusselt number to be a function of the Reynolds
and Prandtl numbers, power-law index and the shape of
the elliptical cylinder. This relationship is developed in this
study.

4. Numerical solution procedure

This numerical investigation has been carried out using
FLUENT (version 6.2). The unstructured ‘quadrilateral’
cells of non-uniform grid spacing were generated using
the commercial grid generator GAMBIT. The two-dimen-
sional, steady, laminar, segregated solver was used to solve
the incompressible flow on the collocated grid arrange-
ment. The second order upwind scheme has been used to
discretize the convective terms in the momentum and
energy equations. The semi-implicit method for the pres-
sure linked equations (SIMPLE) scheme was used for solv-
ing the pressure–velocity decoupling. The ‘constant density’
and ‘non-Newtonian power-law’ viscosity models were used.
FLUENT solves the system of algebraic equations using
the Gauss–Siedel (G–S) point-by-point iterative method
in conjunction with the algebraic multi-grid (AMG)
method solver. The use of AMG scheme can greatly reduce
the number of iterations and thus, CPU time required to
obtain a converged solution, particularly when the model
contains a large number of control volumes. Relative con-
vergence criteria of 10�10 for the continuity and x- and y-
components of the velocity and of 10�15 for temperature
were used in this work.

5. Choice of numerical parameters

Needless to say that the reliability and accuracy of the
numerical results is contingent upon a prudent choice of
the numerical parameters, namely, an optimal domain
and grid size. It is, obviously, not possible to simulate truly
unconfined flow in such numerical studies. In this study,
the domain is characterized by the diameter (D1) of the
faraway cylindrical envelope of fluid. An excessively large
value of D1 will warrant enormous computational
resources and a small value will unduly influence the results
and hence a judicious choice is vital to the accuracy of the
results. Similarly, an optimal grid size should meet two
conflicting requirements, namely, it should be fine enough
to capture the flow field especially near the cylinder yet it
should not be exorbitantly resources intensive. The effects
of these parameters (D1 and grid size) on the drag coeffi-
cient values for the power-law fluid flow past an unconfined
elliptical cylinder have been assessed extensively recently
[9], only the additional results showing the influence of
these parameters on the average Nusselt number are pre-
sented here thereby ensuring the present results to be free
from these artifacts.

5.1. Domain independence study

Following our recent study [9], several values of D1/2a

ranging from 100 to 1200 have been used in this study to
examine the role of domain size on the heat transfer results.

Table 1 shows the effect of domain size (D1/2a) on the
average Nusselt number (Nu) for three values of the power-
law index (n = 0.2, 1 and 1.8), three values of the Reynolds
number (Re = 0.01, 5 and 40) and for extreme values of the
aspect ratio (E = 0.2 and 5) at the highest value of the Pra-
ndtl number (Pr = 100) considered in this work. It can be
seen that at n = 1 and Re = 0.01, an increase in the domain
size from 1000 to 1200 alters the average Nusselt number
values by 0.22% and 0.68% for E = 0.2 and 5, respectively.
The corresponding changes for Re = 0.01 and E = 0.2 are
seen to be 0.008% and 0.034% as the domain size is varied
from 700 to 900; similarly, for an increase in the value of
(D1/2a) from 900 to 1200 for E = 5 at n = 0.2 and 1.8,
respectively, alters the values of the Nusselt number by
0.02% and 0.07%. Furthermore, the change in the domain
size from 200 to 300 and 250 to 300 for Re = 5 and 40 is
found to yield very small change in the average Nusselt
number values (maximum change being 0.1% and 0.15%



Table 1
Domain independence study for heat transfer from an unconfined elliptical cylinder

Domain size D1/(2a) Re Average Nusselt number (Nu at Pr = 100)

Aspect ratio, E = 0.2 Aspect ratio, E = 5

n = 0.2 n = 1 n = 1.8 n = 0.2 n = 1 n = 1.8

500 0.01 1.3125 – – 0.5167 – –
700 1.3124 0.9335 0.8812 0.5168 0.3146 0.3016
900 – 0.9270 0.8803 – 0.3110 0.3010

1000 – 0.9245 0.8800 – 0.3097 0.3008
1200 1.3123 0.9265 – 0.5169 0.3076 –

100 5 0.9394 6.5393 6.1379 6.3429 – 3.3968
200 0.9396 6.5205 6.1209 3.3430 3.6410 3.3846
300 0.9396 6.5144 6.1156 6.3427 3.6355 3.3808

250 40 31.7771 21.1045 18.1773 11.5821 9.4144 8.2192
300 31.7735 21.0982 18.1746 11.5826 9.4091 8.2148
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for E = 0.2 and 5, respectively) for n = 0.2, 1 and 1.8. It
needs to be emphasized here that the extremely small
changes seen in the values of the Nusselt number are
accompanied by a 2–3 fold increase in CPU times for the
extreme conditions. These results also reinforce two points:
firstly, owing to the slow decay of the velocity field, much
larger domain is needed to approximate the unconfined
flow condition at low Reynolds numbers than that at high
Reynolds numbers. Secondly, all else being equal, it
appears that the flow field decays much faster in power-
law fluids than that in Newtonian fluids and it is therefore
possible to work with somewhat shorter domains. This is a
distinct advantage, at least at low Reynolds numbers.

Thus, keeping in mind these two conflicting require-
ments, the domain size of 1200 and 300 are believed to
be adequate in the Reynolds number range of
0.01 6 Re 6 5 and 5 6 Re 6 40, respectively, over the
power-law index range (0.2 6 n 6 1.8) considered here, to
obtain the results which are believed to be essentially free
from domain effects.
Table 2
Grid independence study for heat transfer from an unconfined elliptical cylind

Grid details Re

Grid Ncells Nc d/(2a)

Aspect ratio, E = 0.2
G1 10,000 100 0.0100 40
G2 24,000 200 0.0018
G3 30,000 200 0.013
G2 1,07,800 200 0.0018 0.01
G3 1,28,000 200 0.0010

Aspect ratio, E = 5
G1 16,000 100 0.0070 40
G2 20,000 200 0.0015
G3 33,600 240 0.0010
G2 61,200 200 0.0015 0.01
G3 65,200 240 0.0010

Ncells is the number of quadrilateral cells in the computational domain; Nc is th
spacing in the vicinity of the cylinder.
5.2. Grid independence study

Having fixed the domain size, the grid independence
study has been carried out by using three non-uniform
unstructured grids (G1, G2 and G3 with details as shown
in Table 2) for the two extreme values of the Reynolds
number (Re = 0.01 and 40), for the highest value of the
Prandtl number (Pr = 100) used in this study, for three val-
ues of the power-law index (n = 0.2, 1 and 1.8) and for
extreme values of the aspect ratio, i.e., E = 0.2 and 5. Since
their relative effects on the fluid-dynamic drag have already
been reported elsewhere [9], the additional sensitivity anal-
ysis for the average Nusselt number (Nu) is presented here
(Table 2). It can be seen from these results that, in moving
from grid G2 to G3, the maximum change in the average
Nusselt number values is 0.22% and 0.08% at Re = 40 for
E = 0.2 and 5, respectively, for n = 0.2, 1 and 1.8. The cor-
responding changes at Re = 0.01 are seen to be 0.08% and
0.02% for E = 0.2 and 5, respectively. In view of these neg-
ligible changes (accompanied by up to 2–3 fold increase in
er

Average Nusselt number (Nu at Pr = 100)

n = 0.2 n = 1 n = 1.8

34.7404 22.9639 19.2179
31.6049 21.1445 18.1866
31.5369 21.0994 18.1635
1.3125 0.9925 0.8863
1.3120 0.9248 0.8851

15.4554 9.4046 8.2228
16.1907 9.4328 8.2348
16.2041 9.4375 8.2385
0.5168 0.3076 0.3006
0.5169 0.3076 0.3006

e number of points on the surface of the half cylinder and d/(2a) is the grid
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the computational time), the grid G2 is considered to be
sufficient to resolve the flow and heat transfer phenomena
with acceptable levels of accuracy within the range of con-
ditions of interest here. Finally, to add further weight to
our claim for the accuracy of the results, the numerical
results obtained herein have been compared with the liter-
ature values in the next section.
6. Results and discussion

In this work, the fully converged velocity field [9] was
used as the input to the thermal energy equation. The
two-dimensional steady computations have been carried
out for the following values of the dimensionless parame-
ters: Reynolds number, Re = 0.01, 0.1, 1, 10, 20 and 40;
the power-law index, n = 0.2, 0.6, 1, 1.4, and 1.8 thereby
covering both shear-thinning (n < 1) and shear-thickening
(n > 1) fluids, Prandtl number, Pr = 1, 10, 50 and 100,
and for five values of the aspect ratio of the elliptical cylin-
der, E = 0.2, 0.5, 1, 2 and 5. The flow of Newtonian fluids
is known to be two-dimensional and steady with or without
two symmetric vortices over this range of Reynolds num-
ber [5,33–39] and this is assumed to be so for power-law
fluids also. Owing to the flow symmetry, the results have
been obtained using the half domain (y P 0 in Fig. 1) of
the computational domain. However, prior to presenting
the new results, it is appropriate to validate the solution
procedure to ascertain the accuracy and reliability of the
heat transfer results presented herein.
6.1. Validation of results

Since extensive validations for the flow of Newtonian
and power-law fluids over circular and elliptical cylinders
and of heat transfer results from a circular cylinder have
been reported previously [8,9,14–17,21,22], only the addi-
tional comparisons for heat transfer from an elliptical
cylinder to Newtonian and from circular cylinder to
power-law fluids are reported herein. Table 3 compares
the average Nusselt number (Nu) values for heat transfer
in Newtonian fluids (air) from an elliptical cylinder
Table 3
Comparison of the average Nusselt number (Nu) for heat transfer in
Newtonian fluids (air) from an unconfined elliptical cylinder

Source Re = 0.01 Re = 0.1 Re = 20 Re = 40

E = 1

Present results 0.3054 0.4481 2.4500 3.2622
Dennis et al. [40] 0.3020 0.4520 2.5570 3.4800
Lange et al. [41] 0.2900 0.4400 2.4087 3.2805
Mettu et al. [42] 0.3080 0.4530 2.5400 3.3370
Bharti et al. [8] – – 2.4653 3.2825

Re = 20 Re = 50 Re = 20

E = 2 E = 5

Present results 3.1072 4.6118 2.7338
Badr [28] 3.0000 4.4900 2.8100
(E = 1, 2 and 5) for various values of the Reynolds number
(0.01 6 Re 6 40) with the literature values. An excellent
correspondence can be seen to exist between the present
and literature values for Newtonian fluids; the maximum
difference being of the order of �3%.

Table 4 shows a similar comparison for heat transfer
from a circular cylinder to power-law liquids. Once again,
the present results can be seen in close agreement (<5%)
with the literature results. It needs to be emphasized here
that owing to the non-linear viscous terms, the results for
power-law liquids are expected to be intrinsically less accu-
rate than that for Newtonian fluids. Inspite of this, the
deviations of this order as that seen in Tables 3 and 4 are
not uncommon in such numerical studies and may be
attributed to different numerics and solvers, domain, grid,
etc. used by different investigators. In summary, based on
our previous experience coupled with the fact that the
numerical predictions for power-law fluids tend to be less
accurate, the present results are believed to be reliable to
within ±2 � 3%.
6.2. Heat transfer results

Dimensional considerations suggest the Nusselt number
to be a function of the Reynolds number (Re), flow behav-
iour index (n), Prandtl number (Pr) and the aspect ratio
(E). This relationship is explored in this section. The aver-
age Nusselt number values have also been interpreted in
terms of the Colburn heat transfer factor, j.
6.2.1. Average Nusselt number (Nu)

The dependence of the average Nusselt number (Nu) on
the Reynolds number (Re), power-law index (n), Prandtl
number (Pr) is shown in Tables 5–7 for the elliptical cylin-
der of the aspect ratio of E < 1, E = 1 and E > 1, respec-
tively. Form these tables, it can seen that irrespective of
the shape (E) of the cylinder, the average Nusselt number
(Nu) shows a dependence on the Reynolds and Prandtl
numbers and power-law index, which is qualitatively simi-
lar to that for a circular cylinder. For a fixed value of the
Reynolds number, the average Nusselt number increases
Table 4
Comparison of the average Nusselt number (Nu) for heat transfer in
power-law liquids (Pr = 1) from an unconfined circular cylinder (E = 1)

Re Source n = 0.8 n = 1 n = 1.2 n = 1.4

5 Present results 1.5992 1.5641 1.5396 1.5217
Bharti et al. [15] 1.6844 1.5855 1.5317 1.5011
Soares et al. [23] 1.6214 1.5896 1.5662 1.5481

10 Present results 2.1234 2.0597 2.0110 1.9727
Bharti et al. [15] 2.2274 2.0874 2.0020 1.9475
Soares et al. [23] 2.1164 2.0577 2.0111 1.9730

40 Present results 3.8296 3.6533 3.4132 3.4003
Bharti et al. [15] 3.9915 3.7030 3.3522 3.3522
Soares et al. [23] 3.7359 3.5695 3.3249 3.3249



Table 5
Variation of the Average Nusselt number (Nu) for heat transfer in non-Newtonian power-law liquids from an unconfined elliptical (E < 1) cylinder with
Reynolds and Prandtl numbers and power-law index

n Re = 0.01 Re = 0.1 Re = 1 Re = 10 Re = 40 Re = 0.01 Re = 0.1 Re = 1 Re = 10 Re = 40

Pr = 1, E = 0.2 Pr = 1, E = 0.5

0.2 0.4520 0.6909 1.3120 2.8103 4.6045 0.4057 0.6316 1.2478 2.8452 4.8899
0.6 0.4501 0.6666 1.1408 2.4518 4.2649 0.4039 0.6077 1.0725 2.4383 4.3411
1 0.4411 0.6374 1.0959 2.3130 3.9791 0.3950 0.5797 1.0274 2.2843 3.9727
1.4 0.4423 0.6435 1.0936 2.2260 3.7594 0.3964 0.5858 1.0255 2.1906 3.7222
1.8 0.4463 0.6521 1.0985 2.1672 3.5988 0.4002 0.5940 1.0309 2.1286 3.5495

Pr = 10, E = 0.2 Pr = 10, E = 0.5

0.2 0.6909 1.3123 2.7147 6.2272 12.1432 0.6316 1.2482 2.7533 6.6355 12.7234
0.6 0.6664 1.1179 2.1006 4.9273 10.3427 0.6076 1.0489 2.0689 5.1293 10.2926
1 0.6117 0.9833 1.9198 4.4836 9.2555 0.5543 0.9146 1.8704 4.5780 9.0300
1.4 0.6030 0.9717 1.8725 4.2471 8.5864 0.5469 0.9039 1.8203 4.2783 8.3233
1.8 0.6178 0.9868 1.8584 4.1103 8.1610 0.5613 0.9194 1.8067 4.1054 7.8988

Pr = 50, E = 0.2 Pr = 50, E = 0.5

0.2 1.0580 2.1874 4.4192 10.9178 23.6322 0.9915 2.1711 4.7635 11.9860 24.7283
0.6 0.9447 1.6964 3.2809 8.1228 18.6956 0.8774 1.6401 3.3710 8.6205 18.4188
1 0.8090 1.4088 2.9347 7.4689 16.4384 0.7427 1.3408 2.9537 7.5361 15.8714
1.4 0.7740 1.3593 2.8257 7.1729 15.1327 0.7103 1.2916 2.8283 7.0902 14.5466
1.8 0.7892 1.3677 2.7786 7.0112 14.3377 0.7256 1.3012 2.7783 6.8907 13.7870

Pr = 100, E = 0.2 Pr = 100, E = 0.5

0.2 1.3125 2.7068 5.4419 13.9458 31.4441 1.2482 2.7470 6.0454 15.4563 32.7558
0.6 1.1174 2.0452 3.9886 10.1959 24.1745 1.0484 2.0085 4.1804 10.7913 23.7071
1 0.9266 1.6660 3.5478 9.4380 21.1617 0.8569 1.6043 3.6246 9.4255 20.3383
1.4 0.8733 1.5928 3.4014 9.0659 19.4235 0.8067 1.5295 3.4505 8.9343 18.6051
1.8 0.8865 1.5961 3.3323 8.8661 18.3678 0.8203 1.5342 3.3749 8.7015 17.6189

Table 6
Variation of the Average Nusselt number (Nu) for heat transfer in non-
Newtonian power-law liquids from an unconfined elliptical (E = 1)
cylinder with Reynolds and Prandtl numbers and power-law index

n Re = 0.01 Re = 0.1 Re = 1 Re = 10 Re = 40

Pr = 1

0.2 0.3276 0.5231 1.0847 2.6303 4.7623
0.6 0.3259 0.5009 0.9190 2.2117 4.0545
1 0.3189 0.4767 0.8781 2.0597 3.6534
1.4 0.3200 0.4821 0.8771 1.9727 3.4004
1.8 0.3230 0.4895 0.8830 1.9165 3.2321

Pr = 10

0.2 0.5231 1.0851 2.5434 6.4244 12.0884
0.6 0.5007 0.8959 1.8586 4.8231 9.2910
1 0.4550 0.7742 1.6639 4.2621 8.0576
1.4 0.4487 0.7654 1.6178 3.9629 7.4086
1.8 0.4608 0.7803 1.6078 3.7848 7.0314

Pr = 50

0.2 0.8480 1.9662 4.6340 11.8579 22.9364
0.6 0.7402 1.4464 3.1304 8.2622 16.3920
1 0.6205 1.1649 2.6990 7.1136 13.9963
1.4 0.5921 1.1211 2.5777 6.5418 12.8266
1.8 0.6055 1.1319 2.5350 6.2767 12.1804

Pr = 100

0.2 1.0851 2.5392 6.0091 15.3661 30.0033
0.6 0.8953 1.7975 3.9324 10.4122 20.8647
1 0.7227 1.4106 3.3471 8.8867 17.7713
1.4 0.6782 1.3426 3.1763 8.1755 16.2899
1.8 0.6904 1.3495 3.1112 7.8971 15.4865
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with the increasing Prandtl number, irrespective of the fluid
behaviour and of the shape of the cylinder. A stronger
dependence of the Prandtl number can be seen in shear-
thinning (n < 1) fluids thereby implying that shear-thinning
behaviour promotes heat transfer. In contrast, the shear-
thickening (n > 1) fluids show not only a somewhat weaker
but also an opposite type of dependence. For a fixed value
of the flow behaviour index (n), the average Nusselt num-
ber increases with the Prandtl number and/or the Reynolds
number and/or both. For fixed values of the Reynolds and
Prandtl numbers and power-law index, the decreasing
value of the aspect ratio (E) enhances the rate of heat trans-
fer, i.e., increases the value of the average Nusselt number.
This is so presumably due to the sharp bending of iso-
therms due to the increasing non-streamlining of the cylin-
der [9].

The functional dependence of the average Nusselt num-
ber (Nu) on the pertinent dimensionless parameters
(Re,Pr,n,E) over the range of conditions considered here
(0.01 6 Re 6 40; 1 6 Pr 6 100; 0.2 6 n 6 1.8 and
0.2 6 E 6 5) can be best represented by the following
expression which is of the same form as a recently proposed
equation for circular cylinders [15]:

Nu ¼ kþ F ðnÞReaPrb ð16Þ
where F ðnÞ ¼ að�bnþcÞ 3nþ1

4n

� �d
; a ¼ e

fnþ1
and b ¼ g

‘nþ2
.

The values of the empirically fitted constants (a, b, c, d,
e, f, g, ‘ and k) with their statistical analysis are shown in



Table 7
Variation of the Average Nusselt number (Nu) for heat transfer in non-Newtonian power-law liquids from an unconfined elliptical (E > 1) cylinder with
Reynolds and Prandtl numbers and power-law index

n Re = 0.01 Re = 0.1 Re = 1 Re = 10 Re = 40 Re = 0.01 Re = 0.1 Re = 1 Re = 10 Re = 40

Pr = 1, E = 2 Pr = 1, E = 5

0.2 0.2275 0.3781 0.8337 2.1386 4.0257 0.1194 0.2149 0.5168 1.3908 2.6963
0.6 0.2261 0.3587 0.6937 1.7714 3.3519 0.1183 0.1990 0.4181 1.1383 2.2177
1 0.2204 0.3398 0.6618 1.6456 3.0024 0.1148 0.1876 0.4007 1.0675 2.0105
1.4 0.2215 0.3447 0.6628 1.5798 2.7900 0.1156 0.1916 0.4047 1.0362 1.8910
1.8 0.2239 0.3508 0.6692 1.5393 2.6504 0.1171 0.1960 0.4115 1.0198 1.8132

Pr = 10, E = 2 Pr = 10, E = 5

0.2 0.3780 0.8340 2.0672 5.4208 10.2948 0.2149 0.5168 1.3457 3.5637 6.8817
0.6 0.3585 0.6723 1.4695 3.9619 7.5669 0.1989 0.3994 0.9233 2.5765 5.0333
1 0.3221 0.5742 1.3087 3.4976 6.4753 0.1757 0.3385 0.8311 2.3176 4.3795
1.4 0.3181 0.5701 1.2763 3.2669 5.9359 0.1742 0.3399 0.8211 2.2035 4.0384
1.8 0.3282 0.5838 1.2733 3.1285 5.6339 0.1811 0.3517 0.8283 2.1409 3.8328

Pr = 50, E = 2 Pr = 50, E = 5

0.2 0.6404 1.5699 3.9137 10.1023 19.0951 0.3895 1.0089 2.5803 6.5827 12.6186
0.6 0.5471 1.1223 2.5327 6.8608 13.0908 0.3188 0.6890 1.6102 4.4747 8.7137
1 0.4499 0.8907 2.1703 5.9223 11.1246 0.2560 0.5456 1.4101 3.9598 7.4760
1.4 0.4296 0.8609 2.0805 5.4644 10.1984 0.2455 0.5353 1.3691 3.7358 6.8564
1.8 0.4419 0.8737 2.0561 5.2001 9.6963 0.2552 0.5500 1.3717 3.6115 6.5227

Pr = 100, E = 2 Pr = 100, E = 5

0.2 0.8339 2.0656 5.1322 13.0948 24.6682 0.5169 1.3451 3.3801 8.4900 16.2254
0.6 0.6717 1.4127 3.2049 8.6759 16.5595 0.3989 0.8752 2.0427 5.6618 11.0099
1 0.5304 1.0917 2.7116 7.4373 14.0406 0.3076 0.6773 1.7638 4.9867 9.4091
1.4 0.4978 1.0438 2.5843 6.8343 12.8818 0.2902 0.6586 1.7126 4.6941 8.6242
1.8 0.5099 1.0547 2.5454 6.5040 12.2722 0.3006 0.6743 1.7121 4.5307 8.2148
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Table 8. A comparison between the present numerical
results and the predictions of Eq. (16) is shown in Fig. 2.
Also, shown in Fig. 2 are the predictions from the expres-
sion for average Nusselt number for a circular cylinder
(E = 1) for power-law fluids [15]. An examination of this
Table 8
Correlation coefficients for the dependence of the average Nusselt number (N

E = 0.2 E = 0.5 E = 1 E = 2 E =

Nu

k 0.7864 0.6717 0.4320 0.2094 0.0
a 0.1512 0.1946 0.1102 0.3918 1.6
b �0.0059 �0.0049 �0.0086 0.0286 �0.1
c 0.4682 0.4654 0.2857 0.7669 �2.3
d 0.4182 0.5135 0.5895 0.6393 0.6
e 0.5614 0.5290 0.4762 0.4541 0.4
f �0.0074 �0.0127 �0.0286 �0.0104 0.0
g 0.8582 0.8438 0.8151 0.7949 0.7
‘ 0.1674 0.1913 0.2126 0.2379 0.2
dmax 47.12 44.44 37.00 24.99 20.9
davg 9.85 9.11 6.52 4.39 4.2

# of data points having large deviations

d > 40 6 5 0 0 0
d > 20 22 18 8 2 2
d > 10 38 32 27 16 16

After excluding the data points d > 20

dmax 17.51 19.40 19.83 18.34 19.3
davg 4.92 5.09 4.86 4.08 3.9

d: Percent relative r.m.s. deviation from the numerical data (Total # of data p
table shows that the maximum deviations from Eq. (16)
progressively increase as the value of E deviates increas-
ingly from unity. Similarly, further scrutiny of the present
numerical results revealed that the points relating to certain
combinations of n, Re, Pr or E, especially small values of n
u) and j-factor on the dimensionless parameters (Re, n, Pr and E)

5 E = 0.2 E = 0.5 E = 1 E = 2 E = 5

j-Factor

864 0.1759 0.1615 0.1324 0.0913 0.0464
165 0.7946 0.7984 0.7328 0.5940 0.3878
651 0.2033 0.2221 0.2400 0.2586 0.2786
456 0.5837 0.5592 0.5374 0.5209 0.5085
362 – – – – –
610 – – – – –
150 – – – – –
784 – – – – –
245 – – – – –
9 59.65 57.87 55.31 51.84 45.25
5 12.97 11.44 12.74 13.35 12.62

5 5 4 3 3
26 18 18 14 28
58 50 74 85 85

6 19.86 19.57 19.85 19.45 19.87
8 7.76 7.57 9.55 10.99 10.87

oints = 120 � 5 = 600).



Fig. 2. Comparison of the present average Nusselt number (Nu) results
with the prediction of proposed correlations Bharti et al. [15].
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and Re, showed rather large deviations. However, if 52
points showing errors larger than 20% are excluded, Eq.
(16) reproduces the remaining 548 data points with an
average error of 4.8% which rises to a maximum value of
19.8%. In view of the rather wide ranges of parameters cov-
ered by Eq. (16), this level of accuracy is regarded to be sat-
isfactory and acceptable, at least for the purpose of process
engineering calculations.

6.2.2. Colburn heat transfer factor (j)

In the engineering literature, it is common to use the so-
called Colburn j-factor. It is defined as

j ¼ Nu

RePr1=3

The main virtue of this parameter lies in the fact that it
affords the possibility of reconciling the results for a range
of Prandtl numbers into a single curve. The variation of the
Colburn j-factor with the Reynolds number, power-law
index, Prandtl number and the aspect ratio over the range
of conditions studied herein is shown in Fig. 3. These fig-
ures show qualitatively similar dependence of the Colburn
j-factor (to that of circular cylinder, E = 1, see middle row
of Fig. 3) on the dimensionless parameters (Re,n,Pr,E).
For fixed values of the Reynolds and Prandtl numbers
and power-law index (n), the value of the j-factor increases
from that of a circular cylinder (E = 1) (see top three rows
of Fig. 3) with the decreasing value of the aspect ratio
(E < 1), the opposite dependence can be seen (see last three
rows of Fig. 3) with the increasing value of the aspect ratio
(E > 1). For fixed values of the aspect ratio (E) and Prandtl
number (Pr), the power-law index (n) has a negligible influ-
ence on the j-factor at low Reynolds numbers. Irrespective
of the aspect ratio (E) and Prandtl number (Pr), the
increasing values of the Reynolds number (Re) show a
stronger influence of power-law index (n) on the j-factor
in shear-thinning (n < 1) fluids than that seen in shear-
thickening (n > 1) fluids.
Furthermore, the dependence of the Colburn j-factor on
the Reynolds number (Re) has been elucidated by plotting
the j-factor vs Re on a log–log scale for all values of aspect
ratio (E), Prandtl numbers (Pr) and power-law index (n) in
Fig. 4. As in the case of Newtonian fluids, the j-factor is
seen to vary linearly with the Reynolds number (Re) for
all values of aspect ratio (E), Prandtl number (Pr) and
power-law index (n). This trend is also consistent with that
for circular and square cylinders.

The functional dependence of the present numerical
data in terms of the j-factor on the dimensionless parame-
ters (Re,Pr,n,E) over the range of conditions considered
here can be best represented by the following expression:

j ¼ k
Re
þ a

nbRec ð17Þ

The values of empirically fitted constants (a, b, c, and k)
with their statistical analysis with the present numerical
data are shown in Table 8. A comparison between the pres-
ent numerical results and the predictions of Eq. (17) is
shown in Fig. 5. Also, shown in Fig. 5 are the predictions
from the expression for j-factor for a circular cylinder
(E = 1) for power-law fluids [15]. While this approach rec-
onciles data for different values of the Prandtl number, the
resulting deviations are somewhat larger than that associ-
ated with Eq. (16), as seen in Table 8. The aforementioned
errors associated with Eqs. (16) and (17) seem to be rather
large, but these results do indeed embrace wide ranges of
the pertinent dimensionless parameters. From an engineer-
ing standpoint, once again,this level of accuracy is regarded
to be acceptable.
6.2.3. Effect of power-law rheology (n)

In order to delineate the role of power-law rheology on
heat transfer in an unambiguous manner, the average Nus-
selt number in power-law fluids has been normalized using
the corresponding Newtonian value (XN = Nun/Nun=1 or
=jn/jn=1) at the same values of the Reynolds number
(Re), Prandtl number (Pr) and the aspect ratio (E). Fig. 6
shows the dependence of XN on the Reynolds and Prandtl
numbers, power-law index and aspect ratio of the elliptical
cylinder. These figures show the normalized values to be
XN > 1 and XN < 1 for shear-thinning (n < 1) and shear-
thickening (n > 1) fluid behaviours, respectively. It is
clearly an indication of heat transfer enhancement in
shear-thinning fluids (n < 1), while heat transfer shows an
opposite dependence (except at low Peclet numbers,
Pe = Re � Pr) on the power-law index (n) in shear-thicken-
ing (n > 1) fluids. Over the range of aspect ratios (E), at low
Peclet numbers (Pe 6 1), the normalized values (XN) in
shear-thickening fluids are seen to increase from its Newto-
nian values with the increasing value of power-law index
(see first two columns of Fig. 6). While no heat transfer
results for power-law fluids are available in the literature
for low Reynolds number (Re < 5) even for circular cylin-
der (E = 1), the trends reported here are consistent with



Fig. 3. Dependence of the Colburn heat transfer factor (j) on the Reynolds number (Re), power-law index (n), Prandtl number (Pr) and the aspect ratio
(E) of the elliptic cylinder.
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Fig. 4. Colburn heat transfer factor (j) as a function of the Reynolds
number at different power-law index, Prandtl number and aspect ratio of
the elliptical cylinder.

Fig. 5. Comparison of the present j-factor results with the prediction of
proposed correlations. Bharti et al. [15].
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the literature results for Re P 5 [15,21], the reverse trend
seen in shear-thinning fluids is clearly due to very low Pec-
let numbers (Pe 6 1). For fixed values of the Reynolds and
Prandtl numbers, power-law index (n < 1) and with the
decreasing value of the aspect ratio E < 1 shows a decrease
in the value of XN, i.e., non-Newtonian effects become
weaker (see top three rows of Fig. 6). The opposite depen-
dence of XN on the power-law index (n) can be seen with
the increasing value of E (>1) (see last three rows of
Fig. 6). These figures also show a strong effect of flow
behaviour index on heat transfer in shear-thinning fluids
compared to that in shear-thickening fluids. The normal-
ized values, XN, can be seen to be as high as two under
appropriate conditions in shear-thinning fluids as the value
of the power-law index (n) is progressively decreased from
1 to 0.2. On the other hand, the maximum variation in the
value of XN in shear-thickening fluids is seen to be of the
order of 15% as the power-law index (n) is varied from 1
to 1.8. The normalized (XN) values are, however, seen to
increase with the increasing aspect ratio (E), while the aver-
age Nusselt number (Nu) values show the reverse trend,
thereby suggesting a strong interplay between the shape
and the power-law rheology.
6.2.4. Effect of shape of the cylinder (E)

In order to delineate the role of shape of the cylinder (E)
on heat transfer, the average values of the Nusselt number
for elliptical cylinders have been normalized using the cor-
responding values for a circular cylinder (XE = NuE/NuE=1

or =jE/jE=1) at the same values of the Reynolds number
(Re), power-law index (n) and Prandtl number (Pr).
Fig. 7 shows the variation of the normalized values (XE)
with the Reynolds and Prandtl numbers, power-law index
and aspect ratio of the cylinder. These figures show a rather
complex dependence of heat transfer on the shape of the
cylinder (E) in conjunction with the kinematic parameters
and power-law rheology. For a fixed value of the Prandtl
number (Pr), a decrease in the heat transfer (XE < 1) from
an elliptic cylinder below that from a circular cylinder
(E = 1) can be seen with an increase in the value of E > 1
(see last two rows of Fig. 7) over the range of power-law
index, Reynolds and Prandtl numbers. This seems to sug-
gest the existence of a thicker thermal boundary layer
under these conditions. On the other hand, a decrease in
the value of the aspect ratio E < 1 enhances the heat trans-
fer (XE > 1) from an elliptic cylinder as compared to that
from a circular cylinder (E = 1) for E = 0.5 and for all val-
ues of Re, Pr and n (see second row of Fig. 7), however, for
E = 0.2, the normalized values show a complex dependence
on the aspect ratio (E). This clearly suggests a strong inter-
play between the shape and power-law rheology on heat
transfer in this case.

In summary, the average heat transfer coefficient is seen
to be influenced in an intricate manner by the values of the
Reynolds number (Re), Prandtl number (Pr), the power-
law index (n) and the aspect ratio (E). This interplay is fur-
ther accentuated by the fact that even at low Reynolds
numbers, the viscous term in the momentum equations is
highly non-linear for power-law fluids. As the Reynolds
number is increased, the flow is governed by two non-linear
terms, namely, inertial and viscous, which scale differently
with velocity. For instance, the viscous forces will approx-
imately scale as � Un

1 whereas the inertial forces scale as
� U 2

1. Thus, keeping everything else fixed, the decreasing
value of the power-law index (n) suggests diminishing
importance of the viscous effects for shear-thinning
(n < 1) fluids, while the inertial terms will still scale as
/ U 2

1. On the other hand, viscous effects are likely to grow
with the increasing value of the power-law index (n) for a
shear-thickening (n > 1) fluid. For the extreme case of
n = 1.8, the viscous terms will also scale as � U 1:8

1 , almost
identical to the inertial term. These non-linear interactions
in conjunction with the shape of the cylinder exert a strong
influence on the heat transfer characteristics. It is believed
that these different kinds of dependencies on the flow
behaviour index and velocity are also responsible for the



Fig. 6. Dependence of the normalized average Nusselt number and/or j-factor (XN) on the Reynolds number (Re), power-law index (n), Prandtl number
(Pr) and the aspect ratio (E) of the elliptic cylinder.
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Fig. 7. Dependence of the normalized average Nusselt number and/or j-factor (XE) on the Reynolds number (Re), power-law index (n), Prandtl number
(Pr) and the aspect ratio (E) of the elliptic cylinder.

R.P. Bharti et al. / International Journal of Heat and Mass Transfer 51 (2008) 1838–1853 1851



1852 R.P. Bharti et al. / International Journal of Heat and Mass Transfer 51 (2008) 1838–1853
non-monotonic behaviour of flow and heat transfer param-
eters as seen in this work.
7. Concluding remarks

Extensive numerical results on the average heat transfer
from an elliptic cylinder to power-law fluids have been pre-
sented over wide ranges of conditions as: 0.01 6 Re 6 40,
1 6 Pr 6 100, 0.2 6 n 6 1.8 and for five values of the
aspect ratio (E = 0.2, 0.5, 1, 2 and 5). Irrespective of the
shape of the cylinder, the average Nusselt number shows
a dependence on the Reynolds and Prandtl numbers and
power-law index, which is qualitatively similar to that for
a circular cylinder. The average heat transfer is facilitated
(by up to 100 %) in shear-thinning fluids whereas it is some-
what impeded (�15%) in shear-thickening fluids. The aver-
age Nusselt number values have also been interpreted in
terms of the Colburn j-factor. At low Reynolds numbers,
the flow behaviour index shows negligible influence on
the j-factor. Finally, the functional dependence of the pres-
ent numerical values on the pertinent dimensionless param-
eters has also been presented in the form of closure
equations which are convenient to use in process engineer-
ing calculations.
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